Validation of Finite Element Analysis of a selfexpanding polymeric microstent for treatment of Fallopian tube occlusions

Autor: Ariane Dierke, Thomas Kuske, Hagen Frank, Eric Bohne, Christoph Brandt-Wunderlich, Luise Knorre, Michael Stiehm, Andrea Bock, Niels Grabow, Andreas Wree, Marek Zygmunt, Klaus-Peter Schmitz, Stefan Siewert
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Current Directions in Biomedical Engineering, Vol 7, Iss 2, Pp 700-703 (2021)
ISSN: 2364-5504
Popis: Proximal occlusion of the Fallopian tube is one of the most common causes of female infertility. Due to the occlusion, the passage of the fallopian tubes is no longer given. Basically, there are two options for patients affected by this condition: cost-intensive in vitro fertilization (IVF) or surgery. The pregnancy rates of approximately 50% achieved with current treatment options are not satisfying. In this work, we present a Finite Element Analysis (FEA) model of a previously reported optimized microstent design for minimally invasive therapy of proximal tubal occlusion. Based on experimental investigations, the material model was set up and the simulation was validated. Comparison of the mechanical performance as an application related critical load case was in a good agreement. In this work, the proof of concept for the FEA model and the material model were carried out. In the future, the simulation will be used for further load cases such as the investigation of the bending stiffness and radial force and for the design optimization.
Databáze: OpenAIRE