Encapsulating bacteria in alginate-based electrospun nanofibers
Autor: | Jessica D. Schiffman, Emily Diep |
---|---|
Rok vydání: | 2021 |
Předmět: |
Alginates
Biomedical Engineering Nanofibers 02 engineering and technology engineering.material 010402 general chemistry medicine.disease_cause 01 natural sciences Polyvinyl alcohol Polyethylene Glycols chemistry.chemical_compound Pulmonary surfactant medicine Escherichia coli Humans Surface Tension General Materials Science chemistry.chemical_classification biology Chemistry Polymer 021001 nanoscience & nanotechnology biology.organism_classification Electrospinning 0104 chemical sciences Chemical engineering Nanofiber engineering Biopolymer 0210 nano-technology Bacteria |
Zdroj: | Biomaterials science. 9(12) |
ISSN: | 2047-4849 |
Popis: | Encapsulation technologies are imperative for the safe delivery of live bacteria into the gut where they regulate bodily functions and human health. In this study, we develop alginate-based nanofibers that could potentially serve as a biocompatible, edible probiotic delivery system. By systematically exploring the ratio of three components, the biopolymer alginate (SA), the carrier polymer poly(ethylene oxide) (PEO), and the FDA approved surfactant polysorbate 80 (PS80), the surface tension and conductivity of the precursor solutions were optimized to electrospin bead-free fibers with an average diameter of 167 ± 23 nm. Next, the optimized precursor solution (2.8/1.2/3 wt% of SA/PEO/PS80) was loaded with Escherichia coli (E. coli, 108 CFU mL-1), which served as our model bacterium. We determined that the bacteria in the precursor solution remained viable after passing through a typical electric field (∼1 kV cm-1) employed during electrospinning. This is because the microbes are pulled into a sink-like flow, which encapsulates them into the polymer nanofibers. Upon electrospinning the E. coli-loaded solutions, beads that were much smaller than the size of an E. coli were initially observed. To compensate for the addition of bacteria, the SA/PEO/PS80 weight ratio was reoptimized to be 2.5/1.5/3. Smooth fibers with bulges around the live microbes were formed, as confirmed using fluorescence and scanning electron microscopy. By dissolving and plating the nanofibers, we found that 2.74 × 105 CFU g-1 of live E. coli cells were contained within the alginate-based fibers. This work demonstrates the use of electrospinning to encapsulate live bacteria in alginate-based nanofibers for the potential delivery of probiotics to the gut. |
Databáze: | OpenAIRE |
Externí odkaz: |