Method to compute the stress-energy tensor for a quantized scalar field when a black hole forms from the collapse of a null shell

Autor: Alessandro Fabbri, Shohreh Gholizadeh Siahmazgi, Paul R. Anderson, Raymond D. Clark
Přispěvatelé: Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Ministerio de Ciencia, Innovación y Universidades (España)
Rok vydání: 2020
Předmět:
High Energy Physics - Theory
dimension: 4
space-time: Schwarzschild
Field (physics)
Vacuum state
FOS: Physical sciences
General Relativity and Quantum Cosmology (gr-qc)
coupling: scalar
coupling: minimal
01 natural sciences
General Relativity and Quantum Cosmology
renormalization
vacuum state
black hole: formation
0103 physical sciences
Stress–energy tensor
symmetry: rotation
Tensor
dimension: 2
010306 general physics
Mathematical physics
Physics
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
010308 nuclear & particles physics
shell model
field theory: scalar
field theory in curved space
gravitation: collapse
Black hole
Formal aspects of field theory
Unruh effect
High Energy Physics - Theory (hep-th)
tensor: energy-momentum
[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]
quantization
Schwarzschild radius
Scalar field
Zdroj: Physical Review D
Physical Review D, American Physical Society, 2020, 102 (12), pp.125035. ⟨10.1103/PhysRevD.102.125035⟩
Digital.CSIC. Repositorio Institucional del CSIC
instname
ISSN: 2470-0029
2470-0010
1550-7998
1550-2368
DOI: 10.1103/physrevd.102.125035
Popis: A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work in the two-dimensional case where the results are known.
Comment: 40 pages, 4 figures
Databáze: OpenAIRE