Method to compute the stress-energy tensor for a quantized scalar field when a black hole forms from the collapse of a null shell
Autor: | Alessandro Fabbri, Shohreh Gholizadeh Siahmazgi, Paul R. Anderson, Raymond D. Clark |
---|---|
Přispěvatelé: | Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Ministerio de Ciencia, Innovación y Universidades (España) |
Rok vydání: | 2020 |
Předmět: |
High Energy Physics - Theory
dimension: 4 space-time: Schwarzschild Field (physics) Vacuum state FOS: Physical sciences General Relativity and Quantum Cosmology (gr-qc) coupling: scalar coupling: minimal 01 natural sciences General Relativity and Quantum Cosmology renormalization vacuum state black hole: formation 0103 physical sciences Stress–energy tensor symmetry: rotation Tensor dimension: 2 010306 general physics Mathematical physics Physics [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] 010308 nuclear & particles physics shell model field theory: scalar field theory in curved space gravitation: collapse Black hole Formal aspects of field theory Unruh effect High Energy Physics - Theory (hep-th) tensor: energy-momentum [PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] quantization Schwarzschild radius Scalar field |
Zdroj: | Physical Review D Physical Review D, American Physical Society, 2020, 102 (12), pp.125035. ⟨10.1103/PhysRevD.102.125035⟩ Digital.CSIC. Repositorio Institucional del CSIC instname |
ISSN: | 2470-0029 2470-0010 1550-7998 1550-2368 |
DOI: | 10.1103/physrevd.102.125035 |
Popis: | A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work in the two-dimensional case where the results are known. Comment: 40 pages, 4 figures |
Databáze: | OpenAIRE |
Externí odkaz: |