Pricing without no-arbitrage condition in discrete time

Autor: Laurence Carassus, Emmanuel Lépinette
Přispěvatelé: CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications
Journal of Mathematical Analysis and Applications, Elsevier, In press
ISSN: 0022-247X
1096-0813
Popis: In a discrete time setting, we study the central problem of giving a fair price to some financial product. For several decades, the no-arbitrage conditions and the martingale measures have played a major role for solving this problem. We propose a new approach for estimating the super-replication cost based on convex duality instead of martingale measures duality: The prices are expressed using Fenchel conjugate and bi-conjugate without using any no-arbitrage condition.The super-hedging problem resolution leads endogenously to a weak no-arbitrage condition called Absence of Instantaneous Profit (AIP) under which prices are finite. We study this condition in details, propose several characterizations and compare it to the no-arbitrage condition.
arXiv admin note: text overlap with arXiv:1807.04612
Databáze: OpenAIRE