Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system

Autor: Arnaud Ducrot, Ramsès Djidjou-Demasse, Jean-Baptiste Burie
Přispěvatelé: Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques Appliquées du Havre (LMAH), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU), Institut de Recherche pour le Développement (IRD)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Discrete and Continuous Dynamical Systems-Series B
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2019, 22 (11), ⟨10.3934/dcdsb.2019225⟩
Discrete and Continuous Dynamical Systems-Series B, American Institute of Mathematical Sciences, 2020, 25 (6), pp.2223-2243. ⟨10.3934/dcdsb.2019225⟩
ISSN: 1531-3492
1553-524X
DOI: 10.3934/dcdsb.2019225⟩
Popis: This work is devoted to the study of an integro-differential system of equations modelling the genetic adaptation of a pathogen by taking into account both mutation and selection processes. Using the variance of the dispersion in the phenotype trait space as a small parameter we provide a complete picture of the dynamical behaviour of the solutions of the problem. We show that the dynamics exhibits two main and long regimes – those durations are estimated – before the solution finally reaches its long time configuration, the endemic equilibrium. The analysis provided in this work rigorously explains and justifies the complex behaviour observed through numerical simulations of the system.
Databáze: OpenAIRE