The Compound Action Potential in Subjects Receiving a Cochlear Implant

Autor: Harold C. Pillsbury, William C. Scott, Tatyana E. Fontenot, Craig A. Buchman, Christopher K. Giardina, Kevin D. Brown, Margaret T. Dillon, Douglas C. Fitzpatrick, Oliver F. Adunka, Andrew K. Pappa, Meredith L. Anderson
Rok vydání: 2016
Předmět:
Zdroj: Otologyneurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology. 37(10)
ISSN: 1537-4505
Popis: HYPOTHESIS The compound action potential (CAP) is a purely neural component of the cochlea's response to sound, and may provide information regarding the existing neural substrate in cochlear implant (CI) subjects that can help account for variance in speech perception outcomes. BACKGROUND Measurement of the "total response" (TR), or sum of the magnitudes of spectral components in the ongoing responses to tone bursts across frequencies, has been shown to account for 40 to 50% of variance in speech perception outcomes. The ongoing response is composed of both hair cell and neural components. This correlation may be improved with the addition of the CAP. METHODS Intraoperative round window electrocochleography (ECochG) was performed in adult and pediatric CI subjects (n = 238). Stimuli were tones of different frequencies (250 Hz-4 kHz) at 90 dB nHL. The CAP was assessed in two ways, as an amplitude and with a scaling factor derived from a function fitted to the response. The results were correlated with consonant-nucleus-consonant (CNC) word scores at 6 months post-implantation (n = 51). RESULTS Only about half of the subjects had a measurable CAP at any frequency. The CNC word scores correlated weakly with both amplitude (r = 0.20, p
Databáze: OpenAIRE