Effective-range dependence of two-dimensional Fermi gases
Autor: | Philipp Verpoort, Lars Schonenberg, Gareth Conduit |
---|---|
Přispěvatelé: | Verpoort, Philipp [0000-0003-1319-5006], Conduit, Gareth [0000-0003-3807-6361], Apollo - University of Cambridge Repository |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Physics
Condensed Matter::Quantum Gases Statistical Mechanics (cond-mat.stat-mech) FOS: Physical sciences 01 natural sciences 010305 fluids & plasmas Management Quantum Gases (cond-mat.quant-gas) 0103 physical sciences 010306 general physics cond-mat.stat-mech Condensed Matter - Quantum Gases ComputingMilieux_MISCELLANEOUS cond-mat.quant-gas Condensed Matter - Statistical Mechanics Range (computer programming) |
Popis: | The Feshbach resonance provides precise control over the scattering length and effective range of interactions between ultracold atoms. We propose the ultratransferable pseudopotential to model effective interaction ranges $-1.5 \leq k_\mathrm{F}^2 R_\mathrm{eff}^2 \leq 0$, here $R_\mathrm{eff}$ is the effective range and $k_\mathrm{F}$ is the Fermi wave vector, describing narrow to broad Feshbach resonances. We develop a mean-field treatment and exploit the pseudopotential to perform a variational and diffusion Monte Carlo study of the ground state of the two-dimensional Fermi gas, reporting on the ground-state energy, contact, condensate fraction, momentum distribution, and pair-correlation functions as a function of the effective interaction range across the BEC-BCS crossover. The limit $k_\mathrm{F}^2 R_\mathrm{eff}^2 \to -\infty$ is a gas of bosons with zero binding energy, whereas $\ln(k_\mathrm{F} a) \to -\infty$ corresponds to noninteracting bosons with infinite binding energy. 13 pages, 12 figures |
Databáze: | OpenAIRE |
Externí odkaz: |