Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion
Autor: | Alice Lay, Chris Siefe, Randy D. Mehlenbacher, A. Paul Alivisatos, Stefan Fischer, Jennifer A. Dionne |
---|---|
Rok vydání: | 2019 |
Předmět: |
Lanthanide
Materials science Analytical chemistry Nanoparticle Quantum yield Bioengineering 02 engineering and technology Article Nanomaterials Crystal Affordable and Clean Energy MD Multidisciplinary Nanotechnology General Materials Science Nanoscience & Nanotechnology upconversion Alkaline earth metal Mechanical Engineering Doping General Chemistry core/shell 021001 nanoscience & nanotechnology Condensed Matter Physics Photon upconversion alkaline-earth metals nanoparticles 0210 nano-technology |
Zdroj: | Nano letters, vol 19, iss 6 Fischer, Stefan; Mehlenbacher, Randy D; Lay, Alice; Siefe, Chris; Alivisatos, A Paul; & Dionne, Jennifer A. (2019). Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion.. Nano letters, 19(6), 3878-3885. doi: 10.1021/acs.nanolett.9b01057. Lawrence Berkeley National Laboratory: Retrieved from: http://www.escholarship.org/uc/item/3w75p1fx |
Popis: | The optical efficiency of lanthanide-based upconversion is intricately related to the crystalline host lattice. Different crystal fields interacting with the electron clouds of the lanthanides can significantly affect transition probabilities between the energy levels. Here, we investigate six distinct alkaline-earth rare-earth fluoride host materials (M(1-x)Ln(x)F(2+x), MLnF) for infrared-to-visible upconversion, focusing on nanoparticles of CaYF, CaLuF, SrYF, SrLuF, BaYF, and BaLuF doped with Yb(3+) and Er(3+). We first synthesize ~5 nm upconverting cores of each material via a thermal decomposition method. Then we introduce a dropwise hot-injection method to grow optically inert MYF shell layers around the active cores. Five distinct shell thicknesses are considered for each host material, resulting in 36 unique, monodisperse upconverting nanomaterials each with size below ~15nm. The upconversion quantum yield (UCQY) is measured for all core/shell nanoparticles as function of shell thickness and compared with hexagonal (β-phase) NaGdF(4), a traditional upconverting host lattice. While the UCQY of core nanoparticles is below the detection limit ( |
Databáze: | OpenAIRE |
Externí odkaz: |