BefA, a microbiota-secreted membrane disrupter, disseminates to the pancreas and increases β cell mass

Autor: Jennifer Hampton Hill, Michelle Sconce Massaquoi, Emily Goers Sweeney, Elena S. Wall, Philip Jahl, Rickesha Bell, Karen Kallio, Daniel Derrick, L. Charles Murtaugh, Raghuveer Parthasarathy, S. James Remington, June L. Round, Karen Guillemin
Rok vydání: 2022
Předmět:
Zdroj: Cell metabolism. 34(11)
ISSN: 1932-7420
Popis: Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing β cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets. We detail BefA's atomic structure, containing a lipid-binding SYLF domain, and demonstrate that it permeabilizes synthetic liposomes and bacterial membranes. A BefA mutant impaired in membrane disruption fails to expand β cells, whereas the pore-forming host defense protein, Reg3, stimulates β cell proliferation. Our work demonstrates that membrane permeabilization by microbiome-derived and host defense proteins is necessary and sufficient for β cell expansion during pancreas development, potentially connecting microbiome composition with diabetes risk.
Databáze: OpenAIRE