Randomized Quasi-Monte Carlo for Quantile Estimation
Autor: | Bruno Tuffin, Marvin K. Nakayama, Zachary T. Kaplan, Yajuan Li |
---|---|
Přispěvatelé: | New Jersey Institute of Technology [Newark] (NJIT), Dependability Interoperability and perfOrmance aNalYsiS Of networkS (DIONYSOS), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-RÉSEAUX, TÉLÉCOMMUNICATION ET SERVICES (IRISA-D2), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-CentraleSupélec-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Bretagne Sud (UBS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Estimation
Statistics::Theory 021103 operations research Sample average Cumulative distribution function 0211 other engineering and technologies Estimator Contrast (statistics) 010103 numerical & computational mathematics 02 engineering and technology [INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] 01 natural sciences Statistics::Computation Applied mathematics Statistics::Methodology Quasi-Monte Carlo method 0101 mathematics Mathematics Central limit theorem Quantile |
Zdroj: | WSC 2019-Winter Simulation Conference WSC 2019-Winter Simulation Conference, Dec 2019, National Harbor, United States. pp.1-14 WSC |
Popis: | International audience; We compare two approaches for quantile estimation via randomized quasi-Monte Carlo (RQMC) in an asymptotic setting where the number of randomizations for RQMC grows large but the size of the low-discrepancy point set remains fixed. In the first method, for each randomization, we compute an estimator of the cumulative distribution function (CDF), which is inverted to obtain a quantile estimator, and the overall quantile estimator is the sample average of the quantile estimators across randomizations. The second approach instead computes a single quantile estimator by inverting one CDF estimator across all randomizations. Because quantile estimators are generally biased, the first method leads to an estimator that does not converge to the true quantile as the number of randomizations goes to infinity. In contrast, the second estimator does, and we establish a central limit theorem for it. Numerical results further illustrate these points. |
Databáze: | OpenAIRE |
Externí odkaz: |