Geometry and mineral heterogeneity controls on precipitation in fractures: An X-ray micro-tomography and reactive transport modeling study

Autor: Pierre Le Guern, Catherine Noiriel, Nicolas Seigneur, Vincent Lagneau
Přispěvatelé: Géosciences Environnement Toulouse (GET), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centre de Géosciences (GEOSCIENCES), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), MINES ParisTech - École nationale supérieure des mines de Paris
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Materials science
010504 meteorology & atmospheric sciences
0208 environmental biotechnology
Flow (psychology)
Mineralogy
02 engineering and technology
01 natural sciences
Permeability
[SPI.MAT]Engineering Sciences [physics]/Materials
chemistry.chemical_compound
Calcite precipitation
Reaction rate law
[CHIM.ANAL]Chemical Sciences/Analytical chemistry
Negative feedback
Fluid dynamics
Dolomitic limestone
Porosity
0105 earth and related environmental sciences
Water Science and Technology
Calcite
Fracture sealing
Critical saturation index
Precipitation (chemistry)
[SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment
Reactive transport modeling
[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA]
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
[SDE.ES]Environmental Sciences/Environmental and Society
020801 environmental engineering
Volumetric flow rate
Flow X-ray microtomography
chemistry
13. Climate action
Fracture (geology)
Potential flow
Zdroj: Advances in Water Resources
Advances in Water Resources, 2021, 152, pp.103916. ⟨10.1016/j.advwatres.2021.103916⟩
Advances in Water Resources, Elsevier, 2021, 152, pp.103916. ⟨10.1016/j.advwatres.2021.103916⟩
ISSN: 0309-1708
Popis: International audience; The processes that affect reorganization of flow and transport in fractures during precipitation were investigated experimentally and numerically in order to highlight the interplay between calcite precipitation, flow and growth substrate. Calcite was precipitated from a supersaturated solution at two different flow rates (0.4 or 12 cm3·hr−1) into artificial fractures made in dolomitic limestone. Although the inlet fluid composition and temperature were identical for all the experiments, facture sealing and precipitation patterns were closely linked to the mineral substrate, fracture geometry and flow field reorganization. Calcite precipitation rate is highly variable along and between the flow paths and depends on the local saturation index of the reactive fluid. In addition, calcite precipitates preferentially on calcite comparatively to dolomite substrate. 2D reactive transport modeling accounting for the negative feedback between porosity and permeability decrease succeeded in quantitatively reproducing the experimental observations, such as the evolution of the fracture void obtained from X-ray micro-tomography (XMT), the evolution of the calcium breakthrough concentration and fracture sealing. The corresponding model was then used to evaluate the impacts of fluid flow and reactivity on randomly generated anisotropic fractures geometries. Simulation results reveal that the sealing capacity of fractures and associated reorganization of flow depends on the Damköhler number, i.e., the ratio between characteristic times for advective transport and reaction, although other factors like the fracture geometry and kinetic law play also a role at this stage. More importantly, the existence of a critical saturation index for initiating precipitation onto mineral substrate can substantially impair the prediction of the sealing capacity, and will depend on the spatial heterogeneity and connectivity of the mineral substrate. Most cases result in a strong precipitation gradient along the flow direction that will increase the permeability anisotropy. However, under certain conditions, precipitation allows the fracture to recover more isotropic properties that will lead back to a more uniform flow field and sealing. Negative feedback between precipitation process and transport during fracture closure supports a strong reorganization of flow of supersaturated fluids during geo-engineering operations.
Databáze: OpenAIRE