On the Green Function and Poisson Integrals of the Dunkl Laplacian

Autor: Margit Rösler, Piotr Graczyk, Tomasz Luks
Přispěvatelé: Laboratoire Angevin de Recherche en Mathématiques (LAREMA), Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS), Mathematisches Institut der Universität Paderborn, Graczyk, Piotr
Rok vydání: 2017
Předmět:
Zdroj: Potential Analysis. 48:337-360
ISSN: 1572-929X
0926-2601
DOI: 10.1007/s11118-017-9638-6
Popis: We prove the existence and study properties of the Green function of the unit ball for the Dunkl Laplacian $\Delta_k$ in $\mathbb{R}^d$. As applications we derive the Poisson-Jensen formula for $\Delta_k$-subharmonic functions and Hardy-Stein identities for the Poisson integrals of $\Delta_k$. We also obtain sharp estimates of the Newton potential kernel, Green function and Poisson kernel in the rank one case in $\mathbb{R}^d$. These estimates contrast sharply with the well-known results in the potential theory of the classical Laplacian.
Comment: 25 pages
Databáze: OpenAIRE