Comparaison d'heuristiques pour le calcul de la distance d'édition entre graphes
Autor: | Sébastien Bougleux, David Blumenthal, Luc Brun, Nicolas Boria, Johann Gamper |
---|---|
Přispěvatelé: | Free University of Bozen-Bolzano, Equipe Image - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU), FEDER+Region Normandie., AGAC |
Rok vydání: | 2019 |
Předmět: |
Graph databases
Theoretical computer science Linear programming Computer science Similarity search Nearest neighbor search [INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] 02 engineering and technology ACM: G.: Mathematics of Computing/G.2: DISCRETE MATHEMATICS/G.2.2: Graph Theory/G.2.2.0: Graph algorithms computer.software_genre Distance measures 020204 information systems 0202 electrical engineering electronic engineering information engineering Empirical evaluation Graph edit distance Local search (optimization) Local search (constraint satisfaction) Graph database business.industry [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] Graph Hardware and Architecture ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.6: Optimization 020201 artificial intelligence & image processing ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.2: Approximation Heuristics business computer Assignment problem Information Systems |
Zdroj: | The VLDB Journal The VLDB Journal, Springer, 2020, 29 (1), pp.419-458. ⟨10.1007/s00778-019-00544-1⟩ |
ISSN: | 0949-877X 1066-8888 |
DOI: | 10.1007/s00778-019-00544-1 |
Popis: | International audience; Because of its flexibility, intuitiveness, and ex-pressivity, the graph edit distance (GED) is one of the most widely used distance measures for labeled graphs. Since exactly computing GED is NP-hard, over the past years, various heuristics have been proposed. They use techniques such as transformations to the linear sum assignment problem with error-correction, local search, and linear programming to approximate GED via upper or lower bounds. In this paper , we provide a systematic overview of the most important heuristics. Moreover, we empirically evaluate all compared heuristics within an integrated implementation. |
Databáze: | OpenAIRE |
Externí odkaz: |