Decay estimates for solutions of nonlocal semilinear equations

Autor: Todor Gramchev, Luigi Rodino, Marco Cappiello
Rok vydání: 2015
Předmět:
Zdroj: Nagoya Math. J. 218 (2015), 175-198
ISSN: 2152-6842
0027-7630
Popis: We investigate the decay for |x|→∞ of weak Sobolev-type solutions of semilinear nonlocal equations Pu = F(u). We consider the case when P = p(D) is an elliptic Fourier multiplier with polyhomogeneous symbol p(ξ), and we derive algebraic decay estimates in terms of weighted Sobolev norms. Our basic example is the celebrated Benjamin–Ono equation for internal solitary waves of deep stratified fluids. Their profile presents algebraic decay, in strong contrast with the exponential decay for KdV shallow water waves.
Databáze: OpenAIRE