Mediterranean ocean colour Level 3 operational multi-sensor processing
Autor: | G. Volpe, S. Colella, V. E. Brando, V. Forneris, F. La Padula, A. Di Cicco, M. Sammartino, M. Bracaglia, F. Artuso, R. Santoleri |
---|---|
Rok vydání: | 2019 |
Předmět: |
lcsh:GE1-350
Mediterranean climate 010504 meteorology & atmospheric sciences 010505 oceanography satellite Remote sensing reflectance lcsh:Geography. Anthropology. Recreation 01 natural sciences Multi sensor Set (abstract data type) Mediterranean sea Thematic map lcsh:G Environmental science ComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMS Ocean colour Satellite 14. Life underwater lcsh:Environmental sciences ocean colour Mediterranean 0105 earth and related environmental sciences Remote sensing |
Zdroj: | Ocean science 15 (2019): 127–146. doi:10.5194/os-15-127-2019 info:cnr-pdr/source/autori:Volpe, Gianluca; Colella, Simone; Brando, Vittorio E.; Forneris, Vega; La Padula, Flavio; Di Cicco, Annalisa; Sammartino, Michela; Bracaglia, Marco; Artuso, Florinda; Santoleri, Rosalia/titolo:Mediterranean ocean colour Level 3 operational multi-sensor processing/doi:10.5194%2Fos-15-127-2019/rivista:Ocean science (Print)/anno:2019/pagina_da:127/pagina_a:146/intervallo_pagine:127–146/volume:15 Ocean Science, Vol 15, Pp 127-146 (2019) Ocean Science (1812-0784) (Copernicus Gesellschaft Mbh), 2019-02, Vol. 15, N. 1, P. 127-146 |
ISSN: | 1812-0792 |
DOI: | 10.5194/os-15-127-2019 |
Popis: | The Mediterranean near-real-time multi-sensor processing chain has been set up and is operational in the framework of the Copernicus Marine Environment Monitoring Service (CMEMS). This work describes the main steps operationally performed to enable single ocean colour sensors to enter the multi-sensor processing applied to the Mediterranean Sea by the Ocean Colour Thematic Assembly Centre within CMEMS. Here, the multi-sensor chain takes care of reducing the inter-sensor bias before data from different sensors are merged together. A basin-scale in situ bio-optical dataset is used both to fine tune the algorithms for the retrieval of phytoplankton chlorophyll and the attenuation coefficient of light, Kd, and to assess the uncertainty associated with them. The satellite multi-sensor remote sensing reflectance spectra agree better with the in situ observations than those of the single sensors. Here, we demonstrate that the operational multi-sensor processing chain compares sufficiently well with the historical in situ datasets to also confidently be used for reprocessing the full data time series. |
Databáze: | OpenAIRE |
Externí odkaz: |