Individual Palm Tree Detection Using Deep Learning on RGB Imagery to Support Tree Inventory
Autor: | Kristof Van Tricht, Maria Culman, Stephanie Delalieux |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Technology
010504 meteorology & atmospheric sciences Computer science Tree inventory Science 0211 other engineering and technologies Environmental Sciences & Ecology 02 engineering and technology 01 natural sciences Remote Sensing WEEVIL convolutional neural networks tree inventory Geosciences Multidisciplinary Imaging Science & Photographic Technology 021101 geological & geomatics engineering 0105 earth and related environmental sciences Science & Technology biology business.industry Deep learning Geology aerial images object detection DACTYLIFERA 15. Life on land biology.organism_classification environmental mapping PHOENIX-CANARIENSIS Object detection machine learning palm trees large scale Tree (data structure) Phoenix canariensis Physical Sciences Phoenix dactylifera General Earth and Planetary Sciences Artificial intelligence Phoenix Scale (map) business Cartography Life Sciences & Biomedicine Environmental Sciences |
Zdroj: | Remote Sensing; Volume 12; Issue 21; Pages: 3476 Remote Sensing, Vol 12, Iss 3476, p 3476 (2020) |
ISSN: | 2072-4292 |
DOI: | 10.3390/rs12213476 |
Popis: | Phoenix palms cover more than 1.3 million hectares in the Mediterranean, Middle East, and North Africa regions and they represent highly valued assets for economic, environmental, and cultural purposes. Despite their importance, information on the number of palm trees and the palm distribution across different scenes is difficult to obtain and, therefore, limited. In this work, we present the first region-wide spatial inventory of Phoenix dactylifera (date palm) and Phoenix canariensis (canary palm) trees, based on remote imagery from the Alicante province in Spain. A deep learning architecture that was based on convolutional neural networks (CNN) was implemented to generate a detection model able to locate and classify individual palms trees from aerial high-resolution RGB images. When considering that creating large labeled image datasets is a constraint in object detection applied to remote sensing data, as a strategy for pre-training detection models on a similar task, imagery and palm maps from the autonomous community of the Canary Islands were used. Subsequently, these models were transferred for re-training with imagery from Alicante. The best performing model was capable of mapping Phoenix palms in different scenes, with a changeable appearance, and with varied ages, achieving a mean average precision (mAP) value of 0.861. In total, 511,095 Phoenix palms with a probability score above 0.5 were detected over an area of 5816 km2. The detection model, which was obtained from an out-of-the-box object detector, RetinaNet, provides a fast and straightforward method to map isolated and densely distributed date and canary palms—and other Phoenix palms. The inventory of palm trees established here provides quantitative information on Phoenix palms distribution, which could be used as a baseline for long-term monitoring of palms’ conditions. In addition to boosting palm tree inventory across multiple landscapes at a large scale, the detection model demonstrates how image processing techniques that are based on deep learning leverage image understanding from remote sensing data. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |