Novel QTLs for salinity tolerance revealed by genome-wide association studies of biomass, chlorophyll and tissue ion content in 176 rice landraces from Bangladesh
Autor: | Zeba I. Seraj, G. M. Nurnabi Azad Jewel, Nafis Ul Alam, Tomalika Azim |
---|---|
Rok vydání: | 2021 |
Předmět: |
Chlorophyll
Pigments Salinity Leaves Multifactorial Inheritance Candidate gene Chloroplasts Physiology Genome-wide association study Plant Science Physical Chemistry Plant Resistance to Abiotic Stress Additive genetic effects Biomass Materials Abiotic component Bangladesh Multidisciplinary Ecology Plant Anatomy food and beverages Salt-Tolerant Plants Genomics Salt Tolerance Chemistry Phenotypes Phenotype Plant Physiology Physical Sciences Trait Medicine Cellular Structures and Organelles Cellular Types Research Article Crops Agricultural Farms Genotype Science Plant Cell Biology Materials Science Quantitative Trait Loci Bioengineering Biology Crop Stress Physiological Plant-Environment Interactions Plant Cells Genetics Genome-Wide Association Studies Plant Defenses Genetic Testing Organic Pigments business.industry Plant Ecology Crop yield Ecology and Environmental Sciences Biology and Life Sciences Computational Biology Human Genetics Oryza Cell Biology Plant Pathology Genome Analysis Biotechnology Chemical Properties Genetic Loci Polygene business Genome-Wide Association Study |
Zdroj: | PLoS ONE PLoS ONE, Vol 16, Iss 11 (2021) PLoS ONE, Vol 16, Iss 11, p e0259456 (2021) |
ISSN: | 1932-6203 |
Popis: | Farmland is on the decline and worldwide food security is at risk. Rice is the staple of choice for over half the Earth’s people. To sustain current demands and ascertain a food secure future, substandard farmland affected by abiotic stresses must be utilized. For rapid crop improvement, a broader understanding of polygenic traits like stress tolerance and crop yield is indispensable. To this end, the hidden diversity of resilient and neglected wild varieties must be traced back to their genetic roots. In this study, we separately assayed 11 phenotypes in a panel of 176 diverse accessions predominantly comprised of local landraces from Bangladesh. We compiled high resolution sequence data for these accessions. We collectively studied the ties between the observed phenotypic differences and the examined additive genetic effects underlying these variations. We applied a fixed effect model to associate phenotypes with genotypes on a genomic scale. Discovered QTLs were mapped to known genes. Our explorations yielded 13 QTLs related to various traits in multiple trait classes. 10 identified QTLs were equivalent to findings from previous studies. Integrative analysis assumes potential novel functionality for a number of candidate genes. These findings will usher novel avenues for the bioengineering of high yielding crops of the future fortified with genetic defenses against abiotic stressors. |
Databáze: | OpenAIRE |
Externí odkaz: |