Smoothness, asymptotic smoothness and the Blum-Hanson property
Autor: | Pascal Lefèvre, Étienne Matheron, Armel Primot |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques de Lens (LML), Université d'Artois (UA), Matheron, Etienne |
Rok vydání: | 2015 |
Předmět: |
Mathematics::Functional Analysis
Property (philosophy) Smoothness (probability theory) Composition operator General Mathematics media_common.quotation_subject 010102 general mathematics Mathematical analysis [MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] Banach space [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] Infinity 01 natural sciences 0103 physical sciences Computer Science::Symbolic Computation 010307 mathematical physics 0101 mathematics Algebra over a field media_common Mathematics |
Zdroj: | HAL |
ISSN: | 1565-8511 0021-2172 |
DOI: | 10.1007/s11856-015-1266-5 |
Popis: | We isolate various sufficient conditions for a Banach space X to have the so-called Blum-Hanson property. In particular, we show that X has the Blum-Hanson property if either the modulus of asymptotic smoothness of X has an extremal behaviour at infinity, or if X is uniformly Gâteaux smooth and embeds isometrically into a Banach space with a 1-unconditional finite-dimensional decomposition. |
Databáze: | OpenAIRE |
Externí odkaz: |