A note on the volume of ∇-Einstein manifolds with skew-torsion
Autor: | Ioannis Chrysikos |
---|---|
Rok vydání: | 2021 |
Předmět: |
Mathematics - Differential Geometry
General Mathematics 01 natural sciences 53c05 53b05 General Relativity and Quantum Cosmology symbols.namesake 0103 physical sciences QA1-939 FOS: Mathematics scalar curvature [MATH]Mathematics [math] 0101 mathematics Einstein connections with totally skew-symmetric torsion ∇-einstein manifolds Mathematical physics Physics parallel skew-torsion 010102 general mathematics Skew 53c25 Differential Geometry (math.DG) symbols Torsion (algebra) Mathematics::Differential Geometry 010307 mathematical physics Mathematics |
Zdroj: | Communications in Mathematics, Vol 29, Iss 3, Pp 385-393 (2021) |
ISSN: | 2336-1298 |
Popis: | We study the volume of compact Riemannian manifolds which are Einstein with respect to a metric connection with (parallel) skew-torsion. We provide a result for the sign of the first variation of the volume in terms of the corresponding scalar curvature. This generalizes a result of M. Ville, related with the first variation of the volume on a compact Einstein manifold. 7 pages, to appear in "Communications in Mathematics" |
Databáze: | OpenAIRE |
Externí odkaz: |