On k-tree Containment Graphs of Paths in a Tree

Autor: Noemí Gudiño, Marisa Gutierrez, Liliana Alcón
Rok vydání: 2020
Předmět:
Zdroj: SEDICI (UNLP)
Universidad Nacional de La Plata
instacron:UNLP
ISSN: 1572-9273
0167-8094
DOI: 10.1007/s11083-020-09536-1
Popis: A k-tree is either a complete graph on k vertices or a graph that contains a vertex whose neighborhood induces a complete graph on k vertices and whose removal results in a k-tree. If the comparability graph of a poset P is a k-tree, we say that P is a k-tree poset. In the present work, we study and characterize by forbidden subposets the k-tree posets that admit a containment model mapping vertices into paths of a tree (CPT k-tree posets). Furthermore, we characterize the dually-CPT and strong-CPT k-tree posets and their comparability graphs. The characterizations lead to efficient recognition algorithms for the respective classes.
Centro de Investigación de Matemática
Databáze: OpenAIRE