Nitric oxide consumption through lipid peroxidation in brain cell suspensions and homogenates
Autor: | Catherine N. Hall, Robert G. Keynes, John Garthwaite, Charmaine Griffiths |
---|---|
Rok vydání: | 2005 |
Předmět: |
Cerebellum
medicine.medical_treatment Ascorbic Acid Nitric Oxide Biochemistry Nitric oxide Rats Sprague-Dawley Lipid peroxidation chemistry.chemical_compound Tissue culture medicine Animals Platelet Molecular Biology Cells Cultured Brain Chemistry Neurons Vitamin E Brain Lipid metabolism Cell Biology Lipid Metabolism Rats Oxygen medicine.anatomical_structure chemistry Lipid Peroxidation Trolox Research Article Signal Transduction |
Zdroj: | Biochemical Journal. 387:685-694 |
ISSN: | 1470-8728 0264-6021 |
DOI: | 10.1042/bj20041431 |
Popis: | Mechanisms which inactivate NO (nitric oxide) are probably important in governing the physiological and pathological effects of this ubiquitous signalling molecule. Cells isolated from the cerebellum, a brain region rich in the NO signalling pathway, consume NO avidly. This property was preserved in brain homogenates and required both particulate and supernatant fractions. A purified fraction of the particulate component was rich in phospholipids, and NO consumption was inhibited by procedures that inhibited lipid peroxidation, namely a transition metal chelator, the vitamin E analogue Trolox and ascorbate oxidase. The requirement for the supernatant was accounted for by its content of ascorbate which catalyses metal-dependent lipid peroxidation. The NO-degrading activity of the homogenate was mimicked by a representative mixture of brain lipids together with ascorbate and, under these conditions, the lipids underwent peroxidation. In a suspension of cerebellar cells, there was a continuous low level of lipid peroxidation, and consumption of NO by the cells was decreased by approx. 50% by lipid-peroxidation inhibitors. Lipid peroxidation was also abolished when NO was supplied at a continuously low rate (∼100 nM/min), which explains why NO consumption by this process is saturable. Part of the activity remaining after the inhibition of lipid peroxidation was accounted for by contaminating red blood cells, but there was also another component whose activity was greatly enhanced when the cells were maintained under air-equilibrated conditions. A similar NO-consuming process was present in cerebellar glial cells grown in tissue culture but not in blood platelets or leucocytes, suggesting a specialized mechanism. |
Databáze: | OpenAIRE |
Externí odkaz: |