Topology Preserving Simplification of 2D Non-Manifold Meshes with Embedded Structures
Autor: | Paul Le Texier, Georges-Pierre Bonneau, Fabien Vivodtzev |
---|---|
Přispěvatelé: | Laboratoire de Modélisation et Calcul (LMC - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Virtual environments for animation and image synthesis of natural objects (EVASION), Laboratoire d'informatique GRAphique, VIsion et Robotique de Grenoble (GRAVIR - IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Centre d'études scientifiques et techniques d'Aquitaine (CESTA), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes |
Jazyk: | angličtina |
Rok vydání: | 2005 |
Předmět: |
Computational geometry and its applications
Computer science Collapse (topology) 020207 software engineering Topology (electrical circuits) CAD Context (language use) 02 engineering and technology Combinatorial topology T-vertices Topology Computer Graphics and Computer-Aided Design [INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] Mathematics::Numerical Analysis Multiresolution curves and surfaces Computer graphics Computer Science::Graphics 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Polygon mesh Computer Vision and Pattern Recognition Software ComputingMethodologies_COMPUTERGRAPHICS LOD techniques |
Zdroj: | The Visual Computer The Visual Computer, Springer Verlag, 2005, 21 (8-10), pp.679-688. ⟨10.1007/s00371-005-0334-y⟩ The Visual Computer, 2005, 21 (8-10), pp.679-688. ⟨10.1007/s00371-005-0334-y⟩ |
ISSN: | 0178-2789 |
DOI: | 10.1007/s00371-005-0334-y⟩ |
Popis: | International audience; Mesh simplification has received tremendous attention over the past years. Most of the previous works deal with a proper choice of error measures to guide the simplification. Preserving the topological characteristics of the mesh and possibly of data attached to the mesh is a more recent topic, the present paper is about.We introduce a new topology preserving simplification algorithm for triangular meshes, possibly non-manifold, with embedded polylines. In this context embedded means that the edges of the polylines are also edges of the mesh. The paper introduces a robust test to detect if the collapse of an edge in the mesh modifies either the topology of the mesh or the topology of the embedded polylines. This validity test is derived using combinatorial topology results. More precisely we define a so-called extended complex from the input mesh and the embedded polylines. We show that if an edge collapse of the mesh preserves the topology of this extended complex, then it also preserves both the topology of the mesh and the embedded polylines. Our validity test can be used for any 2-complex mesh, including non-manifold triangular meshes. It can be combined with any previously introduced error measure. Implementation of this validity test is described. We demonstrate the power and versatility of our method with scientific data sets from neuroscience, geology and CAD/CAM models from mechanical engineering. |
Databáze: | OpenAIRE |
Externí odkaz: |