Improvements in Birch’s theorem on forms in many variables

Autor: Tim D Browning, Sean Prendiville
Rok vydání: 2015
Předmět:
Zdroj: Browning, T D & Prendiville, S M 2017, ' Improvements in Birch's theorem on forms in many variables ', Journal für die reine und angewandte Mathematik, vol. 2017, no. 731, pp. 203-234 . https://doi.org/10.1515/crelle-2014-0122
ISSN: 1435-5345
0075-4102
DOI: 10.1515/crelle-2014-0122
Popis: We show that a non-singular integral form of degree d is soluble over the integers if and only if it is soluble over ℝ {\mathbb{R}} and over ℚ p {\mathbb{Q}_{p}} for all primes p, provided that the form has at least ( d - 1 2 ⁢ d ) ⁢ 2 d {(d-\frac{1}{2}\sqrt{d})2^{d}} variables. This improves on a longstanding result of Birch.
Databáze: OpenAIRE