Selective-Area-Grown Semiconductor-Superconductor Hybrids : A Basis for Topological Networks

Autor: Peter Krogstrup, Alexander M. Whiticar, Chris Palmstrom, Charles Marcus, Sara Martí-Sánchez, Joachim E. Sestoft, Jordi Arbiol, Lucas Casparis, Mingtang Deng, S. Vaitiekėnas, Filip Krizek
Přispěvatelé: Danish National Research Foundation, European Commission, Villum Fonden, State Key Laboratory of Satellite Ocean Environment Dynamics (China), La Caixa, Generalitat de Catalunya, Ministerio de Economía y Competitividad (España)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Nanowire
FOS: Physical sciences
General Physics and Astronomy
02 engineering and technology
Parallel magnetic field
Topology
01 natural sciences
Superconductivity (cond-mat.supr-con)
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
0103 physical sciences
Coulomb
Coherence lengths
010306 general physics
Peak spacing
Superconductivity
Physics
Coupling
Condensed Matter - Materials Science
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Superconductivity
Materials Science (cond-mat.mtrl-sci)
Coulomb blockade
021001 nanoscience & nanotechnology
Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
Coherence length
Magnetic field
Loop networks
Spin-orbit couplings
Temperature dependent
Topological networks
Selective areas
0210 nano-technology
Molecular beam epitaxy
Zdroj: Physical Review Letters
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Digital.CSIC. Repositorio Institucional del CSIC
instname
ISSN: 2013-0295
Popis: We introduce selective area grown hybrid InAs/Al nanowires based on molecular beam epitaxy, allowing arbitrary semiconductor-superconductor networks containing loops and branches. Transport reveals a hard induced gap and unpoisoned 2e-periodic Coulomb blockade, with temperature dependent 1e features in agreement with theory. Coulomb peak spacing in parallel magnetic field displays overshoot, indicating an oscillating discrete near-zero subgap state consistent with device length. Finally, we investigate a loop network, finding strong spin-orbit coupling and a coherence length of several microns. These results demonstrate the potential of this platform for scalable topological networks among other applications.
The research was supported by Microsoft, the Danish National Research Foundation, and the European Commission. C. M. M. acknowledges support from the Villum Foundation. M. T. D. acknowledges support from State Key Laboratory of High Performance Computing, China. S. M.-S. acknowledges funding from “Programa Internacional de Becas ‘la Caixa’- Severo Ochoa.” ICN2 acknowledges support from the Severo Ochoa Programme (MINECO, Grant No. SEV2013-0295) and is funded by the CERCA Programme/Generalitat de Catalunya.
Databáze: OpenAIRE