Magnetic properties of hematite (α − Fe2O3) nanoparticles synthesized by sol-gel synthesis method: The influence of particle size and particle size distribution

Autor: Matjaz Panjan, Lazar Kopanja, Vesna Damnjanovic, Jelena Lazovic, Martin Kopáni, Biljana Vucetic Tadic, Marin Tadic
Rok vydání: 2019
Předmět:
Zdroj: Journal of Electrical Engineering
ISSN: 1339-309X
DOI: 10.2478/jee-2019-0044
Popis: Using the sol-gel method we synthesized hematite (α − Fe2O3) nanoparticles in a silica matrix with 60 wt % of hematite. X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra of the sample demonstrate the formation of the α − Fe2O3 phase and amorphous silica. A transmission electron microscopy (TEM) measurements show that the sample consists of two particle size distributions of the hematite nanoparticles with average sizes around 10 nm and 20 nm, respectively. Magnetic properties of hematite nanoparticles were measured using a superconducting quantum interference device (SQUID). Investigation of the magnetic properties of hematite nanoparticles showed a divergence between field-cooled (FC) and zero-field-cooled (ZFC) magnetization curves and two maxima. The ZFC magnetization curves displayed a maximum at around T B = 50 K (blocking temperature) and at T M = 83 K (the Morin transition). The hysteresis loop measured at 5 K was symmetric around the origin, with the values of coercivity, remanent and mass saturation magnetization H C10K ≈ 646 A/cm, (810 Oe), M r10K = 1.34 emu/g and M S10K = 6.1 emu/g respectively. The absence of both coercivity (HC300K = 0) and remanent magnetization (Mr300K = 0) in M(H) curve at 300 K reveals super-paramagnetic behavior, which is desirable for application in biomedicine. The bimodal particle size distributions were used to describe observed magnetic properties of hematite nanoparticles. The size distribution directly influences the magnetic properties of the sample.
Databáze: OpenAIRE