ETEKINA: Analysis of the potential for waste heat recovery in three sectors: aluminium low pressure die casting, steel sector and ceramic tiles manufacturing sector
Autor: | Kristijan Plesnik, Bakartxo Egilegor, Hussam Jouhara, Fouad Al-Mansour, Luca Montorsi, Josu Zuazua, Luca Manzini |
---|---|
Přispěvatelé: | European H2020 project 'Heat pipe technology for thermal energy recovery in industrial applications' (https://www.etekina.eu/, H2020-EE-2017-PPP- 768772) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Payback period
lcsh:Heat 020209 energy 02 engineering and technology 010501 environmental sciences Heat sink 7. Clean energy 01 natural sciences 12. Responsible consumption Waste heat recovery unit Heat recovery ventilation Waste heat Heat exchanger 0202 electrical engineering electronic engineering information engineering Waste heat recovery 0105 earth and related environmental sciences Fluid Flow and Transfer Processes Fouling Waste management Mechanical Engineering lcsh:QC251-338.5 Condensed Matter Physics Heat pipe Energy efficiency 13. Climate action Environmental science |
Zdroj: | International Journal of Thermofluids International Journal of Thermofluids, Vol 1, Iss, Pp 100002-(2020) |
Popis: | In the framework of the ETEKINA project, waste energy streams have been analysed at an aluminium automotive parts production facility in Spain, at a steel foundry in Slovenia and at a ceramic tile production unit in Italy. The aim is to recover more than 40% of the waste heat contained in the exhaust streams and reuse it within the industrial plant rather than emitting it to the atmosphere. To select the applications where the profitability of heat recovery can be demonstrated, the flow rates and temperatures of the applicable exhaust streams have been measured and analysed to select the processes for waste heat recovery and it's re-used in the three industrial plants. The demonstration of the cost-effective waste heat recovery is to be made by using heat pipe heat exchangers (HPHEs) and the processes whereby the heat recovery installations will be erected have already been selected. HPHEs were selected as a heat recovery technology due to their advantages and key features over convectional heat exchangers considering space restrictions, pressure drop limitations, and other waste stream challenges. The challenges include high temperature of the waste and the heat sink streams, fluctuations in the waste stream flow rate and temperature, presence of corrosive moisture such as sulphuric acid in the waste stream, and the presence of particles in the waste stream which can cause fouling leading to failure of convectional technologies. Furthermore, HPHEs are maintenance-free and can have payback period of less than three years. |
Databáze: | OpenAIRE |
Externí odkaz: |