Presynaptic NMDARs cooperate with local spikes toward GABA release from the reciprocal olfactory bulb granule cell spine
Autor: | Lage-Rupprecht, Vanessa, Zhou, Li, Bianchini, Gaia, Aghvami, S Sara, Mueller, Max, Rózsa, Balázs, Sassoè-Pognetto, Marco, Egger, Veronica |
---|---|
Přispěvatelé: | Publica |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Male
granule cell Patch-Clamp Techniques mitral cell QH301-705.5 Science Action Potentials Receptors N-Methyl-D-Aspartate 590 Tiere (Zoologie) Sodium Channels Animals Genetically Modified EXTERNAL PLEXIFORM LAYER LONG-LASTING DEPOLARIZATIONS LATERAL INHIBITION MITRAL CELLS DENDRODENDRITIC SYNAPSES PARVALBUMIN INTERNEURONS GLUTAMATE RECEPTORS MITRAL/TUFTED CELLS GABAERGIC NEURONS DENDRITIC SPINES 570 Biowissenschaften Biologie Animals Biology (General) Rats Wistar gamma-Aminobutyric Acid presynaptic NMDA receptor Neurons Dendritic Cells Olfactory Bulb Electric Stimulation Rats nervous system Gene Expression Regulation ddc:590 Medicine Rat Female ddc:570 Calcium Channels Ion Channel Gating reciprocal synapse Research Article Neuroscience |
Zdroj: | eLife eLife, Vol 9 (2020) |
Popis: | In the rodent olfactory bulb the smooth dendrites of the principal glutamatergic mitral cells (MCs) form reciprocal dendrodendritic synapses with large spines on GABAergic granule cells (GC), where unitary release of glutamate can trigger postsynaptic local activation of voltage-gated Na+-channels (Navs), that is a spine spike. Can such single MC input evoke reciprocal release? We find that unitary-like activation via two-photon uncaging of glutamate causes GC spines to release GABA both synchronously and asynchronously onto MC dendrites. This release indeed requires activation of Navs and high-voltage-activated Ca2+-channels (HVACCs), but also of NMDA receptors (NMDAR). Simulations show temporally overlapping HVACC- and NMDAR-mediated Ca2+-currents during the spine spike, and ultrastructural data prove NMDAR presence within the GABAergic presynapse. This cooperative action of presynaptic NMDARs allows to implement synapse-specific, activity-dependent lateral inhibition, and thus could provide an efficient solution to combinatorial percept synthesis in a sensory system with many receptor channels. |
Databáze: | OpenAIRE |
Externí odkaz: |