Autor: |
Aleksandra Loba, Jarosław Waroszewski, Marcin Sykuła, Cezary Kabala, Markus Egli |
Přispěvatelé: |
University of Zurich, Loba, Aleksandra |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Minerals. 12:359 |
ISSN: |
2075-163X |
DOI: |
10.3390/min12030359 |
Popis: |
Isotopes of meteoric 10Be, 137Cs, 239+240Pu have been proposed as a soil redistribution tracer and applied worldwide as an alternative method to classical field-related techniques (e.g., sediment traps). Meteoric 10Be provides information about long-term soil redistribution rates (millennia), while 137Cs and 239+240Pu give medium-term rates (decades). A significant progress in developing new models and approaches for the calculation of erosion rates has been made; thus, we provide a global review (n = 59) of research articles to present these three isotopes (meteoric 10Be, 239+240Pu and 137Cs) as soil erosion markers in different environments and under different land-use types. Understanding the dynamics and behaviours of isotopes in the soil environment is crucial to determine their usefulness as soil erosion tracers; thus, we discuss the chemical–physical behaviour of meteoric 10Be, 137Cs and 239+240Pu in soils. The application of these isotopes sometimes has strong limitations, and we give suggestions on how to overcome them or how to adapt them to a given situation. This review also shows where these isotopic methods can potentially be applied in the future. A lack in knowledge about soil redistribution rates exists particularly in loess-dominated areas where the tillage system has changed or in areas with strong wind erosion. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|