On equilibria stability in an epidemiological SIR model with recovery-dependent infection rate
Autor: | Nara Bobko, A. D. Baez Sanchez |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
inorganic chemicals
Population multiestabilidade Stability (probability) multistability Classical Analysis and ODEs (math.CA) FOS: Mathematics QA1-939 equilíbrios endêmicos Applied mathematics Quantitative Biology::Populations and Evolution Uniqueness education Multistability SIR epidemiological model recovery-dependent infection rate endemic equilibria Mathematics education.field_of_study Infection rate taxa de infeção variável Mathematics - Classical Analysis and ODEs biological sciences modelo epidemiológico SIR Epidemic model |
Zdroj: | TEMA, Vol 21, Iss 3, Pp 409-424 (2020) TEMA (São Carlos), Volume: 21, Issue: 3, Pages: 409-424, Published: 30 NOV 2020 TEMA (São Carlos) v.21 n.3 2020 TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
ISSN: | 2179-8451 |
Popis: | We consider an epidemiological SIR model with an infection rate depending on the recovered population. We establish sufficient conditions for existence, uniqueness, and stability (local and global) of endemic equilibria and consider also the stability of the disease-free equilibrium. We show that, in contrast with classical SIR models, a system with a recovery-dependent infection rate can have multiple endemic stable equilibria (multistability) and multiple stable and unstable saddle points of equilibria. We establish conditions for the occurrence of these phenomena and illustrate the results with some examples. Submitted to TEMA |
Databáze: | OpenAIRE |
Externí odkaz: |