Ecostoichiometry Reveals the Separation of Microbial Adaptation Strategies in a Bamboo Forest in an Urban Wetland under Simulated Nitrogen Deposition

Autor: Haiyan Sheng, Desy Ekawati, Weicheng Li, Yaoyao Liu, Rui Zhang, Yi Lou, Yifan Qian
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Forests
Volume 11
Issue 4
Forests, Vol 11, Iss 428, p 428 (2020)
ISSN: 1999-4907
DOI: 10.3390/f11040428
Popis: The effect of nitrogen (N) deposition on N limitation, phosphorus (P) limitation and the related soil and microbial stoichiometries remains unclear. A simulated nitrogen deposition (SND) experiment (control, ambient, medium and high) and molecular techniques (high-throughput sequencing of 16S and ITS) were conducted to examine the variations in abiotic and biotic properties and to describe the responses of microbial (bacteria and fungi) adaptation strategies in a moso bamboo (Phyllostachys edulis J. Houzeau) forest following SND. Soil water content (SWC) was positively correlated with the microbial community composition. Observed increases in total N and nitrate N contents and decreased ammonia N suggested that SND influenced nitrification. Chao1 and F:B showed that bacteria were more sensitive to SND than fungi. PCoA and linear discriminant analysis (LDA), coupled with effect size measurements (LefSe), confirmed that microbial community composition, including the subgroups (below class level), responded to SND by employing different adaptation strategies. Soil C:N indicated that the soil of the moso bamboo forest was under N limitation prior to SND. The increase in total P (TP), available P (AP) and microbial biomass P (MBP) suggested the acceleration of soil P cycling. Microbial biomass C (MBC) and microbial biomass N (MBN) were not affected by SND, which led to a significant shift in MBC:MBP and MBN:MBP, suggesting that P utilization per unit of C or N was promoted. There was a negative gradient correlation between the fungal community composition and MBC:MBP, while bacteria were positively correlated with MBN:MBP. The results illustrated that the response of fungi to MBC was more sensitive than that of bacteria in the process of accelerated P cycling, while bacteria were sensitive to MBN. Prior to P limitation, SND eliminated the soil N limitation and stimulated soil microorganisms to absorb more P, resulting in an increase in MBP, but did not alter MBC or MBN. This study contributes to our understanding of the adaptation strategies of fungi and bacteria and their responses to soil and microbial stoichiometries.
Databáze: OpenAIRE