Ecostoichiometry Reveals the Separation of Microbial Adaptation Strategies in a Bamboo Forest in an Urban Wetland under Simulated Nitrogen Deposition
Autor: | Haiyan Sheng, Desy Ekawati, Weicheng Li, Yaoyao Liu, Rui Zhang, Yi Lou, Yifan Qian |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0106 biological sciences
Microorganism chemistry.chemical_element 010603 evolutionary biology 01 natural sciences N limitation Animal science soil physicochemical properties Biomass (ecology) biology Phosphorus Forestry 04 agricultural and veterinary sciences lcsh:QK900-989 biology.organism_classification ecostoichiometry Phyllostachys edulis chemistry Microbial population biology P limitation Soil water 040103 agronomy & agriculture lcsh:Plant ecology 0401 agriculture forestry and fisheries Nitrification Bacteria soil microbial diversity |
Zdroj: | Forests Volume 11 Issue 4 Forests, Vol 11, Iss 428, p 428 (2020) |
ISSN: | 1999-4907 |
DOI: | 10.3390/f11040428 |
Popis: | The effect of nitrogen (N) deposition on N limitation, phosphorus (P) limitation and the related soil and microbial stoichiometries remains unclear. A simulated nitrogen deposition (SND) experiment (control, ambient, medium and high) and molecular techniques (high-throughput sequencing of 16S and ITS) were conducted to examine the variations in abiotic and biotic properties and to describe the responses of microbial (bacteria and fungi) adaptation strategies in a moso bamboo (Phyllostachys edulis J. Houzeau) forest following SND. Soil water content (SWC) was positively correlated with the microbial community composition. Observed increases in total N and nitrate N contents and decreased ammonia N suggested that SND influenced nitrification. Chao1 and F:B showed that bacteria were more sensitive to SND than fungi. PCoA and linear discriminant analysis (LDA), coupled with effect size measurements (LefSe), confirmed that microbial community composition, including the subgroups (below class level), responded to SND by employing different adaptation strategies. Soil C:N indicated that the soil of the moso bamboo forest was under N limitation prior to SND. The increase in total P (TP), available P (AP) and microbial biomass P (MBP) suggested the acceleration of soil P cycling. Microbial biomass C (MBC) and microbial biomass N (MBN) were not affected by SND, which led to a significant shift in MBC:MBP and MBN:MBP, suggesting that P utilization per unit of C or N was promoted. There was a negative gradient correlation between the fungal community composition and MBC:MBP, while bacteria were positively correlated with MBN:MBP. The results illustrated that the response of fungi to MBC was more sensitive than that of bacteria in the process of accelerated P cycling, while bacteria were sensitive to MBN. Prior to P limitation, SND eliminated the soil N limitation and stimulated soil microorganisms to absorb more P, resulting in an increase in MBP, but did not alter MBC or MBN. This study contributes to our understanding of the adaptation strategies of fungi and bacteria and their responses to soil and microbial stoichiometries. |
Databáze: | OpenAIRE |
Externí odkaz: |