Higher Level q-Oscillator Representations for $$U_q(C_n^{(1)}),U_q(C^{(2)}(n+1))$$ and $$U_q(B^{(1)}(0,n))$$

Autor: Jae-Hoon Kwon, Masato Okado
Rok vydání: 2021
Předmět:
Zdroj: Communications in Mathematical Physics. 385:1041-1082
ISSN: 1432-0916
0010-3616
DOI: 10.1007/s00220-021-04009-x
Popis: We introduce higher level $q$-oscillator representations for the quantum affine (super)algebras of type $C_n^{(1)},C^{(2)}(n+1)$ and $B^{(1)}(0,n)$. These representations are constructed by applying the fusion procedure to the level one $q$-oscillator representations which were obtained through the studies of the tetrahedron equation. We prove that these higher level $q$-oscillator representations are irreducible. For type $C_n^{(1)}$ and $C^{(2)}(n+1)$, we compute their characters explicitly in terms of Schur polynomials.
41 pages; Theorem 4.1 has been added, where we prove the irreducibility of the higher level $q$-oscillator representation in a uniform way. The proof is given in Appendix D
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje