A secondary Chern-Euler class
Autor: | Ji-Ping Sha |
---|---|
Rok vydání: | 1999 |
Předmět: |
Pure mathematics
Vector bundle Geometric Topology (math.GT) Characteristic class Manifold Algebra Mathematics - Geometric Topology Mathematics (miscellaneous) Tensor (intrinsic definition) FOS: Mathematics Compactification (mathematics) Statistics Probability and Uncertainty Element (category theory) Euler class Mathematics |
DOI: | 10.48550/arxiv.math/9911269 |
Popis: | Let xi be a smooth oriented vector bundle, with n-dimensional fibre, over a smooth manifold M. Denote by xi-hat the fibrewise one-point compactification of xi. The main purpose of this paper is to define geometrically a canonical element Upsilon(xi) in H^n(xi-hat,Q) (H^n(xi-hat,Z) tensor 1/2, to be more precise). The element \Upsilon(\xi) is a secondary characteristic class to the Euler class in the fashion of Chern-Simons. Comment: 8 pages, published version, abstract added in migration |
Databáze: | OpenAIRE |
Externí odkaz: |