Finite element simulation of sheet metal forming processes using non-quadratic anisotropic plasticity models and solid-Shell finite elements
Autor: | Farid Abed-Meraim, Hocine Chalal, Nabeel Younas |
---|---|
Přispěvatelé: | Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Bambach M. |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0209 industrial biotechnology
Deep drawing Yield (engineering) Materials science Shell (structure) [PHYS.MECA.GEME]Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph] 02 engineering and technology [SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph] Solid-Shell finite elements Industrial and Manufacturing Engineering [PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] [SPI]Engineering Sciences [physics] 020901 industrial engineering & automation Quadratic equation 0203 mechanical engineering Artificial Intelligence [PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph] [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering Mécanique: Mécanique des structures [Sciences de l'ingénieur] Anisotropy Computer simulation Mathematical analysis Mécanique: Mécanique des solides [Sciences de l'ingénieur] Solid−Shell finite elements Forming processes [PHYS.MECA]Physics [physics]/Mechanics [physics] Sheet metal forming Finite element method Anisotropic plasticity 020303 mechanical engineering & transports [SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] |
Zdroj: | HAL Procedia Manufacturing Procedia Manufacturing, Elsevier, 2020, 47, pp.1416-1423. ⟨10.1016/j.promfg.2020.04.302⟩ 23rd International Conference on Material Forming, ESAFORM 2020 23rd International Conference on Material Forming, ESAFORM 2020, May 2020, Cottbus, Germany. 8 pp |
ISSN: | 2351-9789 |
DOI: | 10.1016/j.promfg.2020.04.302⟩ |
Popis: | International audience; During the last decades, a family of assumed-strain solid-shell finite elements has been developed with enriched benefits of solid and shell finite elements together with special treatments to avoid locking phenomena. These elements have been shown to be efficient in numerical simulation of thin 3D structures with various constitutive models. The current contribution consists in the combination of the developed linear and quadratic solid-shell elements with complex anisotropic plasticity models for aluminum alloys. Conventional quadratic anisotropic yield functions are associated with less accuracy in the simulation of forming processes with metallic materials involving strong anisotropy. For these materials, the plastic anisotropy can be modeled more accurately using advanced non-quadratic yield functions, such as the anisotropic yield criteria proposed by Barlat for aluminum alloys. In this work, various quadratic and non-quadratic anisotropic yield functions are combined with a linear eight-node hexahedral solid-shell element and a linear six-node prismatic solid-shell element, and their quadratic counterparts. The resulting solid-shell elements are implemented into the ABAQUS software for the simulation of benchmark deep drawing process of a cylindrical cup. The predicted results are assessed and compared to experimental ones taken from the literature. Compared to the use of conventional quadratic anisotropic yield functions, the results given by the combination of the developed solid-shell elements with non-quadratic anisotropic yield functions show good agreement with experiments. |
Databáze: | OpenAIRE |
Externí odkaz: |