Finite element simulation of sheet metal forming processes using non-quadratic anisotropic plasticity models and solid-Shell finite elements

Autor: Farid Abed-Meraim, Hocine Chalal, Nabeel Younas
Přispěvatelé: Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), Bambach M.
Jazyk: angličtina
Rok vydání: 2020
Předmět:
0209 industrial biotechnology
Deep drawing
Yield (engineering)
Materials science
Shell (structure)
[PHYS.MECA.GEME]Physics [physics]/Mechanics [physics]/Mechanical engineering [physics.class-ph]
02 engineering and technology
[SPI.MECA.SOLID]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Solid mechanics [physics.class-ph]
Solid-Shell finite elements
Industrial and Manufacturing Engineering
[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]
[SPI]Engineering Sciences [physics]
020901 industrial engineering & automation
Quadratic equation
0203 mechanical engineering
Artificial Intelligence
[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph]
[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering
Mécanique: Mécanique des structures [Sciences de l'ingénieur]
Anisotropy
Computer simulation
Mathematical analysis
Mécanique: Mécanique des solides [Sciences de l'ingénieur]
Solid−Shell finite elements
Forming processes
[PHYS.MECA]Physics [physics]/Mechanics [physics]
Sheet metal forming
Finite element method
Anisotropic plasticity
020303 mechanical engineering & transports
[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph]
Zdroj: HAL
Procedia Manufacturing
Procedia Manufacturing, Elsevier, 2020, 47, pp.1416-1423. ⟨10.1016/j.promfg.2020.04.302⟩
23rd International Conference on Material Forming, ESAFORM 2020
23rd International Conference on Material Forming, ESAFORM 2020, May 2020, Cottbus, Germany. 8 pp
ISSN: 2351-9789
DOI: 10.1016/j.promfg.2020.04.302⟩
Popis: International audience; During the last decades, a family of assumed-strain solid-shell finite elements has been developed with enriched benefits of solid and shell finite elements together with special treatments to avoid locking phenomena. These elements have been shown to be efficient in numerical simulation of thin 3D structures with various constitutive models. The current contribution consists in the combination of the developed linear and quadratic solid-shell elements with complex anisotropic plasticity models for aluminum alloys. Conventional quadratic anisotropic yield functions are associated with less accuracy in the simulation of forming processes with metallic materials involving strong anisotropy. For these materials, the plastic anisotropy can be modeled more accurately using advanced non-quadratic yield functions, such as the anisotropic yield criteria proposed by Barlat for aluminum alloys. In this work, various quadratic and non-quadratic anisotropic yield functions are combined with a linear eight-node hexahedral solid-shell element and a linear six-node prismatic solid-shell element, and their quadratic counterparts. The resulting solid-shell elements are implemented into the ABAQUS software for the simulation of benchmark deep drawing process of a cylindrical cup. The predicted results are assessed and compared to experimental ones taken from the literature. Compared to the use of conventional quadratic anisotropic yield functions, the results given by the combination of the developed solid-shell elements with non-quadratic anisotropic yield functions show good agreement with experiments.
Databáze: OpenAIRE