Efficient 3'-end formation of human ß-globin mRNA in vivo requires sequences within the last intron but occurs independently of the splicing reaction

Autor: Finola Geraghty, Michael Antoniou, J. Hurst, Frank Grosveld
Přispěvatelé: Cell biology
Rok vydání: 1998
Předmět:
Zdroj: Nucleic Acids Research, 26(3), 721-729. Oxford University Press
ISSN: 0305-1048
Popis: The second intron (betaIVS-II) of the human beta-globin gene is essential for the accumulation of stable cytoplasmic mRNA and is implicated in promoting efficient 3'-end formation. This report presents quantitative comparisons between betaIVS-II mutants at physiological levels of expression from within a natural chromatin context in vivo which further defines it's function. In marked contrast to a beta-globin gene lacking a second intron, two mutants defective in splicing (small size or a splice donor mutation), still undergo essentially normal levels of 3'-end formation and in the absence of exon skipping. Therefore, 3' cleavage of beta-globin transcripts requires the presence of betaIVS-II sequences, but not the splicing reaction. The placement of betaIVS-II in the IVS-I position did not reduce the efficiency of 3' cleavage indicating that the distance between the necessary element(s) in this intron and the polyadenylation recognition site is not a crucial factor. Subsequent placement of betaIVS-I in the intron II position, reduced the efficiency of 3'-end formation to only 16% of normal. A direct replacement of intron II by the heterologous introns betaIVS-I or alpha-globin IVS-II, only partially substitute (16 and 30% respectively) for betaIVS-II. Hybrid introns show that efficient 3'-end formation is strongly enhanced by the presence of the terminal 60 nt of betaIVS-II. These data imply that the last intervening sequence of multiple intron containing genes is a principal determinant of the efficiency of 3'-end formation and may act as a post-transcriptional regulatory step in gene expression.
Databáze: OpenAIRE