Permutability in uncountable groups
Autor: | F. de Giovanni, Martin J. Evans, M. De Falco, Carmela Musella |
---|---|
Přispěvatelé: | DE FALCO, Maria, Evans, MARTIN JULIAN, DE GIOVANNI, Francesco, Musella, Carmela |
Rok vydání: | 2018 |
Předmět: |
Mathematics::Combinatorics
Group (mathematics) Applied Mathematics 010102 general mathematics Structure (category theory) 01 natural sciences 010101 applied mathematics Combinatorics Mathematics::Logic Mathematics::Group Theory Uncountable set Permutable prime 0101 mathematics Group theory Mathematics |
Zdroj: | Annali di Matematica Pura ed Applicata (1923 -). 197:1417-1427 |
ISSN: | 1618-1891 0373-3114 |
DOI: | 10.1007/s10231-018-0730-3 |
Popis: | A subgroup X of a group G is called permutable if $$XY=YX$$ for all subgroups Y of G. It is well known that permutable subgroups play an important role in many problems in group theory, and the purpose of this paper is to describe the structure of uncountable groups of regular cardinality $$\aleph $$ in which all large subgroups are permutable. |
Databáze: | OpenAIRE |
Externí odkaz: |