High-accuracy embedded boundary grid generation using the divergence theorem
Autor: | Daniel Graves, Terry J. Ligocki, Phillip Colella, Eli Ateljevich, Dharshi Devendran, Julie Percelay, Hans Johansen, Peter Schwartz |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
65N50
Finite volume method Cartesian grid embedded boundaries finite volume methods grid generation Applied Mathematics Mathematical analysis Divergence theorem 65N12 Order of accuracy Boundary (topology) Flux Context (language use) 65N08 Computer Science Applications law.invention Computational Theory and Mathematics Mesh generation law Cartesian coordinate system Mathematics |
Zdroj: | Commun. Appl. Math. Comput. Sci. 10, no. 1 (2015), 83-96 |
Popis: | We present an algorithm to produce the necessary geometric information for finite volume calculations in the context of Cartesian grids with embedded boundaries. Given an order of accuracy for the overall calculation, we show what accuracy is required for each of the geometric quantities and we demonstrate how to calculate the moments using the divergence theorem. We demonstrate that, for a known flux, these moments can be used to create a flux divergence of the expected order. |
Databáze: | OpenAIRE |
Externí odkaz: |