Positive solutions for a Minkowski-curvature equation with indefinite weight and super-exponential nonlinearity

Autor: Alberto Boscaggin, Guglielmo Feltrin, Fabio Zanolin
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Popis: We investigate the existence of positive solutions for a class of Minkowski-curvature equations with indefinite weight and nonlinear term having superlinear growth at zero and super-exponential growth at infinity. As an example, for the equation \begin{equation*} \Biggl{(} \dfrac{u'}{\sqrt{1-(u')^{2}}}\Biggr{)}' + a(t) \bigl{(}e^{u^{p}}-1\bigr{)} = 0, \end{equation*} where $p > 1$ and $a(t)$ is a sign-changing function satisfying the mean-value condition $\int_{0}^{T} a(t)\,\mathrm{d}t < 0$, we prove the existence of a positive solution for both periodic and Neumann boundary conditions. The proof relies on a topological degree technique.
19 pages, 3 figures
Databáze: OpenAIRE