Impact of Magnetic Field Configuration on Heat Transport in Stellarators and Heliotrons

Autor: Felix, Warmer, K, Tanaka, P, Xanthopoulos, M, Nunami, M, Nakata, C D, Beidler, S A, Bozhenkov, M N A, Beurskens, K J, Brunner, O P, Ford, G, Fuchert, H, Funaba, J, Geiger, D, Gradic, K, Ida, H, Igami, S, Kubo, A, Langenberg, H P, Laqua, S, Lazerson, T, Morisaki, M, Osakabe, N, Pablant, E, Pasch, B, Peterson, S, Satake, R, Seki, T, Shimozuma, H M, Smith, T, Stange, A V, Stechow, H, Sugama, Y, Suzuki, H, Takahashi, T, Tokuzawa, T, Tsujimura, Y, Turkin, R C, Wolf, I, Yamada, R, Yanai, R, Yasuhara, M, Yokoyama, Y, Yoshimura, M, Yoshinuma, D, Zhang, W-X Team, Lhd Experimental Group
Přispěvatelé: W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society, LHD Experimental Group
Rok vydání: 2021
Předmět:
Zdroj: Physical Review Letters
ISSN: 1079-7114
Popis: We assess the magnetic field configuration in modern fusion devices by comparing experiments with the same heating power, between a stellarator and a heliotron. The key role of turbulence is evident in the optimized stellarator, while neoclassical processes largely determine the transport in the heliotron device. Gyrokinetic simulations elucidate the underlying mechanisms promoting stronger ion scale turbulence in the stellarator. Similar plasma performances in these experiments suggests that neoclassical and turbulent transport should both be optimized in next step reactor designs.
Databáze: OpenAIRE