Biomimetic strategy towards gelatin coatings on PET. Effect of protocol on coating stability and cell-interactive properties
Autor: | Filip De Vos, Elena Diana Giol, C. J. Kirkpatrick, Sandra Van Vlierberghe, Peter Dubruel, Ronald E. Unger, Ken Kersemans |
---|---|
Přispěvatelé: | Applied Physics and Photonics |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
food.ingredient
Biocompatibility Cell Biomedical Engineering 02 engineering and technology engineering.material 010402 general chemistry 01 natural sciences Gelatin food Coating Smooth muscle Biomimetics medicine General Materials Science Chemistry Polyethylene Terephthalates General Chemistry General Medicine 021001 nanoscience & nanotechnology 0104 chemical sciences Polyester medicine.anatomical_structure engineering Surface modification 0210 nano-technology Vascular graft Biomedical engineering SURFACE MODIFICATION CHEMISTRY POLYESTER ADHESION FUNCTIONALIZATION BIOCOMPATIBILITY IMMOBILIZATION PROLIFERATION COMPATIBILITY BIOMATERIALS |
Popis: | Gelatin-modified poly(ethylene terephthalate) (PET) surfaces have been previously realized via an intermediate dopamine coating procedure that resulted in surfaces with superior haemocompatibility compared to unfunctionalized PET. The present study addresses the biocompatibility assessment of these coated PET surfaces. In this context, the stability of the gelatin coating upon exposure to physiological conditions and its cell-interactive properties were investigated. The proposed gelatin–dopamine-PET surfaces showed an increased protein coating stability up to 24 days and promoted the attachment and spreading of both endothelial cells (ECs) and smooth muscle cells (SMCs). In parallel, physisorbed gelatin coatings exhibited similar cell-interactive properties, albeit temporarily, as the coating delaminated within 1 week after cell seeding. Furthermore, no or only minimal immunogenic or inflammatory responses were observed during in vitro cytotoxicity and endotoxicity assessment for all gelatin-modified PET surfaces evaluated. Overall, the combined enhanced biocompatibility reported herein together with the previously proven haemocompatibility show the potential of the gelatin–dopamine-PET surfaces to function as vascular graft candidates. |
Databáze: | OpenAIRE |
Externí odkaz: |