Generalized Lyapunov exponent of random matrices and universality classes for SPS in 1D Anderson localisation
Autor: | Christophe Texier |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Physics
Logarithm Gaussian General Physics and Astronomy Second moment of area FOS: Physical sciences Lyapunov exponent Disordered Systems and Neural Networks (cond-mat.dis-nn) Condensed Matter - Disordered Systems and Neural Networks 01 natural sciences Power law 010305 fluids & plasmas symbols.namesake 0103 physical sciences symbols Large deviations theory 010306 general physics Random matrix Scaling Mathematical physics |
Popis: | Products of random matrix products of $\mathrm{SL}(2,\mathbb{R})$, corresponding to transfer matrices for the one-dimensional Schr\"odinger equation with a random potential $V$, are studied. I consider both the case where the potential has a finite second moment $\langle V^2\rangle Comment: 6 pages, LaTeX |
Databáze: | OpenAIRE |
Externí odkaz: |