c-Gluing construction and slices of quasi-Fuchsian space

Autor: Sara Maloni
Rok vydání: 2020
Předmět:
Zdroj: Geometriae Dedicata. 212:107-139
ISSN: 1572-9168
0046-5755
DOI: 10.1007/s10711-020-00551-5
Popis: Given a pants decomposition $\mathcal{PC} = \{\gamma_1, \ldots, \gamma_{\xi}\}$ on a hyperbolizable surface $\Sigma$ and a vector $\underline{c} = (c_1, \ldots, c_{\xi}) \in \mathbb{R}_+^\xi$, we describe a plumbing construction which endows $\Sigma$ with a complex projective structure for which the associated holonomy representation $\rho$ is quasi-Fuchsian and for which $\ell_\rho(\gamma_i) = c_i$. When $\underline{c} \to \underline{0} = (0, \ldots, 0)$ this construction limits to Kra's plumbing construction. In addition, when $\Sigma = \Sigma_{1,1}$, the holonomy representations of these structures belong to the `linear slice' of quasi-Fuchsian space $\mathrm{QF}(\Sigma)$ defined by Komori and Parkonnen. We discuss some conjectures for these slices suggested by the pictures we created in joint work with Yamashita.
Comment: 27 pages, 10 figures
Databáze: OpenAIRE