Identification of Potent Inhibitors against Aurora Kinase A Using Molecular Docking and Molecular Dynamics Simulation Studies

Autor: Donq-qing Wei, Ramanathan Thirugnanasambandam, Gurudeeban Selvaraj, Sathishkumar Chinnasamy, Aman Chandra Kaushik, Chandrabose Selvaraj, Keren Gu, Asma Sindhoo Nangraj, Sanjeev Singh, Satyavani Kaliamurthi
Rok vydání: 2019
Předmět:
DOI: 10.20944/preprints201908.0238.v1
Popis: Aurora kinase A (AURKA) is a normal cell proliferation-inducing enzyme encoded by AURKA gene, with over-expression observed in different types of malignancies. Hence, the goal is to find potential inhibitors against AURKA. In this study, molecular docking, Standard Precision and Extra Precision methods were employed. After the docking study, the ligands showed an extremely low binding score which suggested very high binding affinity of the ligands. Furthermore, Quantum polarized ligand docking (QPLD) was performed to predict the binding status of the molecules. Based on the binding affinity, the top four compounds were chosen for further analysis. The docked complexes were further analyzed in explicit water conditions using 100 ns molecular dynamics simulations and binding free energy calculation. Then, density functional theory (DFT) calculation was used to calculate the molecular properties of the molecules. Finally, systems biology experiments validated the molecular docking and molecular dynamics simulation studies and indicated that quercetin, kaempferol, luteolin and rutin could inhibit the AURKA. The results show that, these four molecules have high binding affinity to the AURKA and significant interactions (LEU139, GLU211and ALA213) were also identified with the hinge region of Aurora kinase A. Thus, LEU139, GLU211, and ALA213 were identified as the crucial protein mechanisms.
Databáze: OpenAIRE