Generalized heat kernel coefficients
Autor: | L. L. Salcedo |
---|---|
Rok vydání: | 2001 |
Předmět: | |
Zdroj: | EPJ direct. 3:1-10 |
ISSN: | 1435-3725 |
DOI: | 10.1007/s1010501c0014 |
Popis: | Following Osipov and Hiller, a generalized heat kernel expansion is considered for the effective action of bosonic operators. In this generalization, the standard heat kernel expansion, which counts inverse powers of a c-number mass parameter, is extended by allowing the mass to be a matrix in flavor space. We show that the generalized heat kernel coefficients can be related to the standard ones in a simple way. This holds with or without trace and integration over spacetime, to all orders and for general flavor spaces. Gauge invariance is manifest. 6 pages, REVTEX, no figures. Minor corrections |
Databáze: | OpenAIRE |
Externí odkaz: |