Subcritical Random Hypergraphs, High-Order Components, and Hypertrees

Autor: Oliver Cooley, Wenjie Fang, Mihyun Kang, Nicola Del Giudice
Přispěvatelé: Institute of Discrete Mathematics, Graz University of Technology [Graz] (TU Graz), Laboratoire d'Informatique Gaspard-Monge (LIGM), Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM), Technische Universität Graz (TU Graz), Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: SIAM Journal on Discrete Mathematics
SIAM Journal on Discrete Mathematics, Society for Industrial and Applied Mathematics, 2020, 34 (4), pp.2033-2062. ⟨10.1137/18M1221527⟩
Scopus-Elsevier
ANALCO
ISSN: 0895-4801
DOI: 10.1137/18M1221527⟩
Popis: In the binomial random graph $\mathcal{G}(n,p)$, when $p$ changes from $(1-\varepsilon)/n$ (subcritical case) to $1/n$ and then to $(1+\varepsilon)/n$ (supercritical case) for $\varepsilon>0$, with high probability the order of the largest component increases smoothly from $O(\varepsilon^{-2}\log(\varepsilon^3 n))$ to $\Theta(n^{2/3})$ and then to $(1 \pm o(1)) 2 \varepsilon n$. As a natural generalisation of random graphs and connectedness, we consider the binomial random $k$-uniform hypergraph $\mathcal{H}^k(n,p)$ (where each $k$-tuple of vertices is present as a hyperedge with probability $p$ independently) and the following notion of high-order connectedness. Given an integer $1 \leq j \leq k-1$, two sets of $j$ vertices are called \emph{$j$-connected} if there is a walk of hyperedges between them such that any two consecutive hyperedges intersect in at least $j$ vertices. A $j$-connected component is a maximal collection of pairwise $j$-connected $j$-tuples of vertices. Recently, the threshold for the appearance of the giant $j$-connected component in $\mathcal{H}^k(n,p)$ and its order were determined. In this article, we take a closer look at the subcritical random hypergraph. We determine the structure, order, and size of the largest $j$-connected components, with the help of a certain class of `hypertrees' and related objects. In our proofs, we combine various probabilistic and enumerative techniques, such as generating functions and couplings with branching processes. Our study will pave the way to establishing a symmetry between the subcritical random hypergraph and the hypergraph obtained from the supercritical random hypergraph by deleting its giant $j$-connected component.
Comment: 27 pages
Databáze: OpenAIRE