Schrödinger operators with locally integrable potentials on infinite metric graphs
Autor: | Alexander Pankov, Setenay Akduman |
---|---|
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Integrable system Applied Mathematics 010102 general mathematics Spectrum (functional analysis) Essential spectrum 01 natural sciences 010101 applied mathematics Algebra symbols.namesake Bounded function Metric (mathematics) symbols 0101 mathematics Analysis Schrödinger's cat Mathematics |
Zdroj: | Applicable Analysis. 96:2149-2161 |
ISSN: | 1563-504X 0003-6811 |
DOI: | 10.1080/00036811.2016.1207247 |
Popis: | The paper is devoted to Schrodinger operators on infinite metric graphs. We suppose that the potential is locally integrable and its negative part is bounded in certain integral sense. First, we obtain a description of the bottom of the essential spectrum. Then we prove theorems on the discreteness of the negative part of the spectrum and of the whole spectrum that extend some classical results for one dimensional Schrodinger operators. |
Databáze: | OpenAIRE |
Externí odkaz: |