Structure and Function of the Bacterial Heterodimeric ABC Transporter CydDC

Autor: Robert K. Poole, Stephen A. Baldwin, Mark Shepherd, Wesley I. Booth, Yvonne Nyathi, Masao Yamashita, Vincent L. G. Postis, Svetomir B. Tzokov, Per A. Bullough, Hao Xie
Rok vydání: 2014
Předmět:
Zdroj: The Journal of Biological Chemistry
ISSN: 0021-9258
DOI: 10.1074/jbc.m114.590414
Popis: Background: The ABC transporter CydDC, which pumps sulfur compounds, is required for assembly of the bacterial respiratory machinery. Results: ATP hydrolysis by CydCD in response to sulfur compounds is modulated by hemes. Conclusion: Hemes regulate CydDC in pumping sulfur compounds. Significance: This work is a first step in understanding the structure, function, and regulation of a protein vital to the assembly of the respiratory machinery.
In Escherichia coli, the biogenesis of both cytochrome bd-type quinol oxidases and periplasmic cytochromes requires the ATP-binding cassette-type cysteine/GSH transporter, CydDC. Recombinant CydDC was purified as a heterodimer and found to be an active ATPase both in soluble form with detergent and when reconstituted into a lipid environment. Two-dimensional crystals of CydDC were analyzed by electron cryomicroscopy, and the protein was shown to be made up of two non-identical domains corresponding to the putative CydD and CydC subunits, with dimensions characteristic of other ATP-binding cassette transporters. CydDC binds heme b. Detergent-solubilized CydDC appears to adopt at least two structural states, each associated with a characteristic level of bound heme. The purified protein in detergent showed a weak basal ATPase activity (approximately 100 nmol Pi/min/mg) that was stimulated ∼3-fold by various thiol compounds, suggesting that CydDC could act as a thiol transporter. The presence of heme (either intrinsic or added in the form of hemin) led to a further enhancement of thiol-stimulated ATPase activity, although a large excess of heme inhibited activity. Similar responses of the ATPase activity were observed with CydDC reconstituted into E. coli lipids. These results suggest that heme may have a regulatory role in CydDC-mediated transmembrane thiol transport.
Databáze: OpenAIRE