Improved bounds on the diameter of lattice polytopes

Autor: Lionel Pournin, Antoine Deza
Přispěvatelé: Graphes, Algorithmes et Combinatoire (LRI) (GALaC - LRI), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique de Paris-Nord (LIPN), Université Sorbonne Paris Cité (USPC)-Institut Galilée-Université Paris 13 (UP13)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2017
Předmět:
Zdroj: Acta Mathematica Hungarica
Acta Mathematica Hungarica, Springer Verlag, In press, ⟨10.1007/s10474-017-0777-4⟩
ISSN: 1588-2632
0236-5294
DOI: 10.1007/s10474-017-0777-4
Popis: We show that the largest possible diameter $\delta(d,k)$ of a $d$-dimensional polytope whose vertices have integer coordinates ranging between $0$ and $k$ is at most $kd-\lceil2d/3\rceil$ when $k\geq3$. In addition, we show that $\delta(4,3)=8$. This substantiates the conjecture whereby $\delta(d,k)$ is at most $\lfloor(k+1)d/2\rfloor$ and is achieved by a Minkowski sum of lattice vectors.
Comment: 14 pages, 1 figure
Databáze: OpenAIRE