Benchmark Study of Density Cumulant Functional Theory: Thermochemistry and Kinetics

Autor: Alexander Yu. Sokolov, Henry F. Schaefer, Andreas V. Copan
Rok vydání: 2014
Předmět:
Zdroj: Journal of Chemical Theory and Computation. 10:2389-2398
ISSN: 1549-9626
1549-9618
DOI: 10.1021/ct5002895
Popis: We present an extensive benchmark study of density cumulant functional theory (DCFT) for thermochemistry and kinetics of closed- and open-shell molecules. The performance of DCFT methods (DC-06, DC-12, ODC-06, and ODC-12) is compared to that of coupled-electron pair methods (CEPA0 and OCEPA0) and coupled-cluster theory (CCSD and CCSD(T)) for the description of noncovalent interactions (A24 database), barrier heights of hydrogen-transfer reactions (HTBH38), radical stabilization energies (RSE30), adiabatic ionization energies (AIE), and covalent bond stretching in diatomic molecules. Our results indicate that out of four DCFT methods the ODC-12 method is the most reliable and accurate DCFT formulation to date. Compared to CCSD, ODC-12 shows superior results for all benchmark tests employed in our study. With respect to coupled-pair theories, ODC-12 outperforms CEPA0 and shows similar accuracy to the orbital-optimized CEPA0 variant (OCEPA0) for systems at equilibrium geometries. For covalent bond stretching, ODC-12 is found to be more reliable than OCEPA0. For the RSE30 and AIE data sets, ODC-12 shows competitive performance with CCSD(T). In addition to benchmark results, we report new reference values for the RSE30 data set computed using coupled cluster theory with up to perturbative quadruple excitations.
Databáze: OpenAIRE