EvolGAN: Evolutionary Generative Adversarial Networks

Autor: Fabien Teytaud, Jeremy Rapin, Hanhe Lin, Baptiste Roziere, Vlad Hosu, Olivier Teytaud, Mariia Zameshina
Přispěvatelé: Facebook AI Research [Paris] (FAIR), Facebook, Laboratoire d'Informatique Signal et Image de la Côte d'Opale (LISIC), Université du Littoral Côte d'Opale (ULCO), Limnological Institute, University of Konstanz, Konstanz, Germany, Université Grenoble Alpes - UFR Informatique et Mathématiques Appliquées (UGA UFR IMAG), Université Grenoble Alpes (UGA), Teytaud, Fabien
Rok vydání: 2021
Předmět:
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
FOS: Computer and information sciences
Computer Science - Machine Learning
Computer science
Computer Vision and Pattern Recognition (cs.CV)
media_common.quotation_subject
Computer Science - Computer Vision and Pattern Recognition
02 engineering and technology
010501 environmental sciences
Space (commercial competition)
01 natural sciences
Machine Learning (cs.LG)
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Image (mathematics)
Adversarial system
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
0202 electrical engineering
electronic engineering
information engineering

Quality (business)
ComputingMilieux_MISCELLANEOUS
0105 earth and related environmental sciences
media_common
business.industry
Estimator
[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG]
020201 artificial intelligence & image processing
Artificial intelligence
business
Generative grammar
Generator (mathematics)
Zdroj: Computer Vision – ACCV 2020 ISBN: 9783030695378
ACCV (4)
Asia Conference on Computer Vision (ACCV)
Asia Conference on Computer Vision (ACCV), Nov 2020, Virtual, Japan
Popis: We propose to use a quality estimator and evolutionary methods to search the latent space of generative adversarial networks trained on small, difficult datasets, or both. The new method leads to the generation of significantly higher quality images while preserving the original generator's diversity. Human raters preferred an image from the new version with frequency 83.7pc for Cats, 74pc for FashionGen, 70.4pc for Horses, and 69.2pc for Artworks, and minor improvements for the already excellent GANs for faces. This approach applies to any quality scorer and GAN generator.
accepted ACCV oral
Databáze: OpenAIRE