Applying the evaluation results of porosity-permeability distribution characteristics based on hydraulic flow units (HFU) to improve the reliability in building a 3D geological model, GD field, Cuu Long Basin

Autor: Quang Trong Hoang, Xuan Van Tran, Tuan Manh Nguyen, Khanh Quang Do, Ngoc Ba Thai
Rok vydání: 2017
Předmět:
Zdroj: Journal of Petroleum Exploration and Production Technology. 7:687-697
ISSN: 2190-0566
2190-0558
DOI: 10.1007/s13202-017-0334-2
Popis: Constructing a facies model in geological modeling with two types of rock facies is not only stimulating but also necessary for modeling in a new direction to be able to reflect the interconnection of the oil body as well as heterogeneity of reservoir characteristics more clearly. The results of environmental interpretation derived from core sample data show that more than ten kinds of facies in rivers/lakes have been identified in the study area. However, predicting this kind of facies in the space of coring in wells and then simulated reservoirs as depositional facies faces many difficulties. Therefore, the simulation under lithology facies still includes reservoir and non-reservoir rocks but splits reservoir rocks into different HU types based on their porosity-permeability characteristics derived from core analysis results used in facies modeling steps. FZI values are shown on the chart by the statistical probability of reservoir rock in four HU types corresponding to four lines with different slope angles representing each HU type from the core analysis data. The newly identified HU types then are shown on the Amaefule chart plot according to the relationships between the reservoir rock quality index and normalized porosity (Φz) for all core samples. The division of rock facies into HU types also refers to the results of sedimentary environmental interpretation from core sample data in the wells. We used the artificial neutron network method in the IP software to predict the FZI values and then grouped them by HU type for no core sample intervals of whole sections of the wells. Based on the facies model and parameter model of porosity, saturation was built, and in-place oil reserves were calculated using the volumetric calculation function in Petrel software. One hundred realizations were run, and we chose the base case corresponding to the P50 probabilistic results to simplify its use in production simulation models. Compared with the results calculated by volumetric methods for block H1 and H2 of 102 million barrels, those of oil-in-place reserves calculated from the model were more than about 3%.
Databáze: OpenAIRE